

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4725

Further Pure Mathematics 1

Thursday

8 JUNE 2006

Morning

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 3 printed pages and 1 blank page.

1 The matrices **A** and **B** are given by $\mathbf{A} = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$.

(i) Find
$$A + 3B$$
. [2]

- (ii) Show that A B = kI, where I is the identity matrix and k is a constant whose value should be stated. [2]
- 2 The transformation S is a shear parallel to the x-axis in which the image of the point (1, 1) is the point (0, 1).
 - (i) Draw a diagram showing the image of the unit square under S. [2]
 - (ii) Write down the matrix that represents S. [2]
- 3 One root of the quadratic equation $x^2 + px + q = 0$, where p and q are real, is the complex number 2-3i.
 - (i) Write down the other root. [1]
 - (ii) Find the values of p and q. [4]
- 4 Use the standard results for $\sum_{r=1}^{n} r^3$ and $\sum_{r=1}^{n} r^2$ to show that, for all positive integers n,

$$\sum_{r=1}^{n} (r^3 + r^2) = \frac{1}{12} n(n+1)(n+2)(3n+1).$$
 [5]

5 The complex numbers 3 - 2i and 2 + i are denoted by z and w respectively. Find, giving your answers in the form x + iy and showing clearly how you obtain these answers,

(i)
$$2z - 3w$$
, [2]

(ii)
$$(iz)^2$$
, [3]

(iii)
$$\frac{z}{w}$$
. [3]

6 In an Argand diagram the loci C_1 and C_2 are given by

$$|z| = 2$$
 and $\arg z = \frac{1}{3}\pi$

respectively.

- (i) Sketch, on a single Argand diagram, the loci C_1 and C_2 . [5]
- (ii) Hence find, in the form x + iy, the complex number representing the point of intersection of C_1 and C_2 . [2]

7 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

(i) Find
$$A^2$$
 and A^3 . [3]

- (ii) Hence suggest a suitable form for the matrix A^n . [1]
- (iii) Use induction to prove that your answer to part (ii) is correct. [4]
- 8 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} a & 4 & 2 \\ 1 & a & 0 \\ 1 & 2 & 1 \end{pmatrix}$.
 - (i) Find, in terms of a, the determinant of M. [3]
 - (ii) Hence find the values of a for which M is singular. [3]
 - (iii) State, giving a brief reason in each case, whether the simultaneous equations

$$ax + 4y + 2z = 3a,$$

$$x + ay = 1,$$

$$x + 2y + z = 3,$$

have any solutions when

- (a) a = 3,
- **(b)** a = 2.

[4]

9 (i) Use the method of differences to show that

$$\sum_{r=1}^{n} \left\{ (r+1)^3 - r^3 \right\} = (n+1)^3 - 1.$$
 [2]

- (ii) Show that $(r+1)^3 r^3 \equiv 3r^2 + 3r + 1$. [2]
- (iii) Use the results in parts (i) and (ii) and the standard result for $\sum_{r=1}^{n} r$ to show that

$$3\sum_{r=1}^{n}r^{2}=\frac{1}{2}n(n+1)(2n+1).$$
 [6]

10 The cubic equation $x^3 - 2x^2 + 3x + 4 = 0$ has roots α , β and γ .

(i) Write down the values of
$$\alpha + \beta + \gamma$$
, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. [3]

The cubic equation $x^3 + px^2 + 10x + q = 0$, where p and q are constants, has roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$.

(ii) Find the value of p. [3]

(iii) Find the value of q. [5]

QUESTION PAPER PREPARATION - GENERAL SUPPORT TEAM

Subject/Paper No:	4725	Month:	JUNE	Year:	2006
Cabicodi apci ito:		141011111		ı caı.	

1.		B1		Two elements correct
	i) $\begin{pmatrix} 7 & 4 \\ 0 & -1 \end{pmatrix}$	B1	2	All four elements correct
	(ii) $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	B1		A - B correctly found
	<i>k</i> = 3	B1	2	Find k
			4	
2	(i)	M1		For 2 other correct vertices
		A1	2	For completely correct diagram
	(ii) $ \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} $	B1 B1	2	Each column correct
3.	(i) 2 + 3i	B1	1	Conjugate seen
}	(ii)	M1		Attempt to sum roots or consider <i>x</i> terms in expansion or substitute 2 – 3i into equation and equate imaginary parts
	p = -4	A1 M1		Correct answer Attempt at product of roots or consider last
	q = 13	A1	4	term in expansion or consider real parts Correct answer
			5	

QUESTION PAPER PREPARATION - GENERAL SUPPORT TEAM

Subject/Paper No: ⁴⁷²⁵	. Month:	JUNE	Year:	2006
-----------------------------------	----------	------	-------	------

4.	$\sum r^3 + \sum r^2$	M1		Consider the sum as two separate parts
	$\Sigma r^2 = \frac{1}{6} n(n+1)(2n+1)$	A1		Correct formula stated
	$\Sigma r^{3} = \frac{1}{4}n^{2}(n+1)^{2}$	A1		Correct formula stated
	$\frac{1}{12}n(n+1)(n+2)(3n+1)$	M1		Attempt to factorise and simplify or expand
	12	A1	5	both expressions Obtain given answer correctly or complete
				verification
			5	
5.	(i) -7i	B1 B1	2	Real part correct Imaginary part correct
	(:) 2 . 2:			iz stated or implied or $i^2 = -1$ seen
	(ii) 2 + 3i	B1 B1		Real part correct
	-5 + 12i	B1	3	Imaginary part correct
	(iii) $\frac{1}{5}(4-7i)$ or equivalent	M1 A1 A1	3	Multiply by conjugate Real part correct Imaginary part correct N.B. Working must be shown
				TWO WOLKING MUST DE SHOWII
6	(i) Circle, Centre O radius 2 One straight line Through O with +ve slope In 1 st quadrant only	B1 B1 B1 B1 B1	5	Sketch showing correct features
	(ii) $1 + i\sqrt{3}$	M1		Attempt to find intersections by trig, solving equations or from graph

QUESTION PAPER PREPARATION – GENERAL SUPPORT TEAM

Subject/Paper No: ⁴⁷²⁵ Month: JUNE Year: ²⁰⁰	J6
--	----

		A1	2 7	Correct answer stated as complex number
7.	(i)	M1		Attempt at matrix multiplication
	$\mathbf{A}^2 = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{A}^3 = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}$	A1 A1	3	Correct A ² Correct A ³
	(ii) $\mathbf{A}^{n} = \begin{pmatrix} 2^{n} 0 \\ 0 1 \end{pmatrix}$	B1	1	Sensible conjecture made
	(iii) (0 1)	B1 M1 A1 A1	4 8	State that conjecture is true for $n = 1$ or 2 Attempt to multiply \mathbf{A}^n and \mathbf{A} or vice versa Obtain correct matrix Statement of induction conclusion
8.	(i)	M1		Correct expansion process shown
	$a \begin{bmatrix} a & 0 \\ 2 & 1 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & a \\ 1 & 2 \end{bmatrix}$	A1		Obtain correct unsimplified expression
	a^2-2a	A1	3	Obtain correct answer
	(ii)	M1		Solve their det $\mathbf{M} = 0$
	a = 0 or a = 2	A1A1ft	3	Obtain correct answers
	(iii) (a)	B1 B1		Solution, as inverse matrix exists or \mathbf{M} non- singular or $\det \mathbf{M} \neq 0$
	(b)	B1 B1	4	Solutions, eqn. 1 is multiple of eqn 3
-			10	

QUESTION PAPER PREPARATION - GENERAL SUPPORT TEAM

Subi	iect/Pai	per No:	4725	Month:	JUNE	Year:	2006
Ou.	,000. u	PO. 110.				· oai i	

9.	(i)	M1 A1	2	Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1	2	Attempt to expand and simplify Obtain given answer correctly
	(iii) $(n+1)^3 - 1 - \frac{3}{2}n(n+1) - n$	B1 B1 M1 M1 A1		Correct Σr stated $\Sigma 1 = n$ Consider sum of three separate terms on RHS Required sum is LHS – two terms Correct unsimplified expression
	$\frac{1}{2}n(n+1)(2n+1)$ (i) $\alpha + \beta + \gamma = 2$ $\alpha\beta\gamma = -4$	A1	6 10	Obtain given answer correctly
10.	(i) $\alpha + \beta + \gamma = 2$ $\alpha \beta \gamma = -4$	B1 B1		Write down correct values
	$\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B1	3	
	(ii)	M1		Sum new roots
	$\alpha + 1 + \beta + 1 + \gamma + 1 = 5$	A1ft		Obtain numeric value using their (i)
	<i>p</i> = -5	A1ft	3	p is negative of their answer
	(iii)	M1*		Expand three brackets
		A1		$\alpha\beta\gamma + \alpha\beta + \beta\gamma + \gamma\alpha + \alpha + \beta + \gamma + 1$
		DM1		Use their (i) results
		A1ft		Obtain 2
	q = -2	A1ft	5	q is negative of their answer
		M2 A1 M1 A2 A1 A1	11	Alternative for (ii) & (iii) Substitute $x = u - 1$ in given equation Obtain correct unsimplified equation for u Expand Obtain $u^3 - 5u^2 + 10u - 2 = 0$ State correct values of p and q .

Page5.... of5....
CONFIDENTIAL

QUESTION PAPER PREPARATION - GENERAL SUPPORT TEAM

DRAFT MARK SCHEME